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High Energy Physics (HEP)

Research and Facilities

ML is Everywhere in HEP
• Particle-level simulation
  Validation
• Detector-level simulation

Production
• Tracking, calorimeter clustering 

Validation
• Jet reconstruction, tagging, ID

Production
• Data analysis/Inverse problems

Ubiquitous

The HEP Advantage
Abundance of labelled training data from high-fidelity simulation

Why Scale it up?
• Large and/or Composite Generative 

Adversarial Networks (GANs) → 100s of 
hours to train

• Millions of measurements, graph 
embeddings → GPU memory 

• Multi-scale “end-to-end” models: raw → 
particles

• Active learning, anomaly detection, 
uncertainty quantification



What are we scaling and potential impact of scaling

Scaling: training and inference (i.e., running your model after 
it has been trained)
Impact: 

● Faster development cycle of computationally demanding models
● Better models via (Hyper Parameter) Optimization of models 
● Enabling the use of computationally intense models (i.e., GANs)
● Faster processing of data with trained models

Enable maximum impact of ML on HEP
By mitigating computational limitations



Large problems

Scaling up Training
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Distributed training
Goal: Shorten the development cycle for large models weeks→hours
1. Distributed=across multiple nodes and multiple processors, even across nodes 

at different locations (i.e., across a network)
○ How you distribute the training load has a significant effect on computational performance

2. Several distributed training solutions exist, e.g.,
○ Horovod
○ LBANN (used to train multiple GANs simultaneously)
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https://indico.fnal.gov/event/64257/#5-livermore-big-artificial-neu


Model and Hyper Parameter Optimization (HPO)
Why is it useful?

● Model and hyper parameter 
optimization can have dramatic effects 
on physics performance (ACAT talk on 
particle flow HPO)

Starting point: GNN and/or Transformer based models (particle 
flow, flavour tagging, tracking, jet reco...) and optimize 

Both industry tools (e.g., RayTune) and HEP workflow-based 
approaches (PanDA/iDDS) exist

https://indico.cern.ch/event/1330797/contributions/5776140/attachments/2819433/4923158/2024_03_07_acat.pdf
https://indico.cern.ch/event/1330797/contributions/5776140/attachments/2819433/4923158/2024_03_07_acat.pdf
https://indico.fnal.gov/event/63938/#5-hyper-parameter-optimization


Inference as a Service (IaaS)
Why is it useful?

● Simple interface that handles complex 
interaction between nodes, availability of 
different resources, even across network 

● Fully utilize GPU 
● Scale out to multiple GPU and nodes
● Example of existing IaaS efforts: Exa.TrkX 

and ACTS as a Service

https://indico.cern.ch/event/1330797/contributions/5796611/attachments/2820244/4924638/ACTS_as_a_service_ACAT2024.pdf


High Performance Computers (HPCs)
Opportunity: Enable/encourage HEP ML practitioners to 
think big

● HPCs are large systems with GPU and CPU 
○ Examples: Aurora at Argonne, Frontier at Oak Ridge, NERSC at 

Berkeley
● HPCs can offer immense scales: we are in the exa-era of 

computational power
○ Aurora has 21K CPUs and 64K GPUs

● Most are optimized for ML workflows
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Compute intensive ML models examples

● Simulation
○ FastCaloGAN -> a lot of human intervention to make the GANs converge. LBANN has 

multi-generator, multi-discriminator framework that is only possible with scaling.  Cosmological 
simulations, DES adversarial domain adaptation

● Reconstruction
○ Particle/Jet ID, e.g., flavor tagging
○ Tracking

● Analysis
○ Simulation-based inference, unfolding (inverse problem)
○ LSST image processing

● Resource constrained models
○ Size of model vs performance

■ E.g., quantization reduces model size and improves inference time but increases training 
time
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Scaling Up Anomaly Detection in Lux-Zeppelin
● World’s most sensitive Dark Matter search, as of last year  🎉 

● 1,000-live-days run planned, expected 5 billion events or 5 

PB of raw data, overwhelmingly dominated by background

● Anomaly detection has been attempted in LZ with some 

success, on a subset of the data (detector & simulated).

● Identified 2 types of anomalies: “unphysical” detector events 

and problems with the reconstruction algorithm, Anomalies 

becoming rare, down to 1%. .

● Next step: apply variational autoencoders to the full dataset 

(at the waveform level), to reach 109 sensitivity.

● Challenge: train VAE on the entire 5PB dataset, to tackle 

unknown and/or unmodeled backgrounds.
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Clustering w/ DBSCAN: 
clusters 1-3 are “physical”



Scaling Up Cosmology Simulations
Solving cosmology inverse problems using 
full-physics simulations costs 
10-100s millions of hours on HPC systems.
Instead, use partial/full-physics simulations to train
● 3-D U-Net CNN to map N-body simulations to hydro fields 

or to higher-resolution simulations
● Convolutional VAE to generate jointly

○ accurate hydrodynamical fields
○ reasonable variance estimates

● U-Net generative models to improve the accuracy of 
low-resolution simulations and use for covariance 
estimation

● These models trained and run on 4-GPU node

New approach using sharding/replication scales up 
to thousands of GPUs, allowing use of 
transformer-based models
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Test run of a transformer-based model (3.3 billion 
parameters) on Polaris with up to 1696 GPUs
 



Scaling Up Particle Tracking

(Kiesler 2020)

Tracking most compute-intensive reconstruction algorithm for ATLAS, CMS, DUNE
Graph Networks deliver competitive performance across multiple detectors

● Resource-intensive hybrid GPU pipeline 
● Several weeks required to train the full pipeline 
● Memory limited, during training and inference

■ Distributed training needed to maximize physics performance

Several R&D projects focused on 
end-to-end rawdata→particle reconstruction

● multiscale hierarchical GNNs
● object condensation networks

Current  compute and memory-limited
● Would need to scale up resources 10-100x

(Murnane -2023)

https://arxiv.org/pdf/2002.03605.pdf
https://indico.jlab.org/event/459/contributions/11743/


Scaling Up Calorimeter Simulation

FastCaloGAN 
• First large-scale DNN to run in production in ATLAS
• A combination of 300 WGAN trained to simulate the response of 

pions, electrons, and photon in an [energy, 𝜂] bin 
• ~100 GPU days total to train

Calorimeter simulation in 
dominates G4 CPU 
usage

1 million epochs to train each GAN, 
looks like it could have used 10x more!



Conclusion

● ML models are getting larger and tackling more complex problems
● Developing and optimizing models is becoming computationally expensive

○ Development cycle should not be stunted by computing
● HPCs offer an opportunity to scale training and inference
● Facilitating scaling of ML can have impact on our science
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