Evaluating the SZ3 compressor on data from the ATLAS experiment

Author: Amy Byrnes (UIC, ALCF)

Mentors: Serhan Mete (ANL, ATLAS),

Peter Van Gemmeran (ANL, ATLAS), Jahred Adelman (NIU, ATLAS)

Advisor: Michael E. Papka (ALCF, UIC)

Motivation

- ▶ Data collected from HL-LHC will strain storage capacity
- ▶ There is a hard limit to how much we can shrink data via lossless compression

What is data compression?

- Compression is a technique that allows us to store the same amount of information using fewer bits
- In the context of floating-point data:
 - ▶ In the standard encoding for floats, each float is 32 bits, or 4 bytes
 - ▶ In a sequence of *compressed* floats, the average bits/value is <32

Lossless vs Lossy compression

- Lossless compression
 - Original data can be recovered exactly from compressed data
 - Major trade-off is compression ratio vs computation

- Lossy compression refers to
 - ▶ Data is permanently altered by the compression process
 - Additional trade-off: compression ratio vs distortion rate

SZ3

- "A Modular Error-bounded Lossy Compression Framework for Scientific Datasets"
- Developed from 2016 at Argonne National Laboratory
- Designed primarily for HPC applications
- Major components:
 - Predictors
 - Error-bounded quantizer
 - Ability to compose a custom compression pipeline

Methodology

- Dataset:
 - DAOD_PHYSLITE.37019878
 - ▶ 21 files
 - ▶ 13.4 GB
 - ▶ Data size for each branch ranges from 0.27 10.14 MB
- Branches:
 - AnalysisJetsAuxDyn.pt or "Jet pt"
 - AnalysisJetsAuxDyn.phi or "Jet phi"
 - AnalysisJetsAuxDyn.eta or "Jet eta"

Methodology

- Bit truncation
 - Truncate floats to have < 23 mantissa bits</p>
 - **16**, 15, 14, 13, 12, 11, 10, 9, 8
 - Compress truncated floats with zlib at level 5
- SZ3
 - Lossy algorithms
 - ► Lorenzo predictor, regression
 - Lorenzo predictor, interpolation
 - ► Interpolation predictor
 - No predictor
 - Absolute error bounds:
 - ▶ 1, 0.75, 0.5, 0.25, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001

SZ3 Performance Overview

- Observation 1: SZ3's performance depends on input size
- Observation 2: SZ3 "fails" when input size or error bound are too low
 - "Failure" in this case means quantizer cannot guarantee data will remain within the requested error bound

Compression Ratio vs Input Size for Jet pt

SZ3, No Predictor

Distorted data: Jet pt

Distorted data: Jet phi

SZ3 vs Bit Truncation: Distortion

Compression Ratio vs Data Distortion for Jet pt

SZ3 vs Bit Truncation: Distortion

Compression Ratio vs Data Distortion for Jet phi

Compression Ratio vs Data Distortion for Jet eta

References & Acknowledgements

- SZ3 Framework: Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M Gok, Jiannan Tian, Junjing Deng, Jon C Calhoun, Dingwen Tao, Zizhong Chen, and Franck Cappello. "SZ3: A modular framework for composing prediction-based error-bounded lossy compressors", IEEE Transactions on Big Data (TBD 22).
- "ATLAS DAOD_PHYSLITE format Run 2 2016 proton-proton collision data" https://opendata.cern.ch/record/80001

This work is supported by the Chicagoland Computational Traineeship in High Energy Particle Physics (C²P²) under US Department of Energy Office of Science grant DE-SC0023524.