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From Likelihoods to Language Models:
Al's Evolving Role in High- Energy Physics

= HEP’s long history with advanced
analysis methods
From likelihood fits to boosted decision trees
& random forests.

= Why Al now?
Data deluge from LHC/HL-LHC & next-gen
experiments; complex detector environments.

= The leap to modern Al
Deep learning, transformers, generative
models—tackling classification, simulation,
and anomaly detection.

= Impact
Improving physics reach, speeding
simulations, and enabling new kinds of
searches.
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A Legacy of Statistical Learnlng in HEP

= Analytical methods have always been central to

discovery ;Z‘jﬁ \ chiro | Bavesioter | | e
— Likelihood fits, chi-squared minimization, Bayesian : g Zreas 1ale
inference. — N
= Adoption of early machine learning in the
2000s-2010s Single Decision Tree Gradient Boosted Trees Randorh Forest m
— Boosted Decision Trees (BDTs) in Higgs searches 5 i o g
(e.g., ATLAS, CMS). @ ® i o8
— Random Forests for particle ID and event éo 600 b 2
classification. . {{G'g\ e

= Strengths and limits
— Highly interpretable, good for small datasets.

Struggle with complex correlations in : fr st s —
high-dimensional feature spaces. g7 £
= The setup for today s L
— Increasing detector complexity and HL-LHC data 5 Sttt Lute Hoon 5" Egg z%’ EE EE EE
rates demand models with higher capacity and - andb b final states ' ' '
automation. M e i 8 D A
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https://medium.com/analytics-vidhya/ensemble-models-bagging-boosting-c33706db0b0b
https://arxiv.org/pdf/1012.3754
https://www.wolfram.com/language/introduction-machine-learning/bayesian-inference/
https://arxiv.org/pdf/2012.07822
https://arxiv.org/pdf/2012.07822
https://arxiv.org/pdf/2012.07822
https://arxiv.org/pdf/2012.07822
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Modern Al for Object Identification <

* From handcrafted features to end-to-end learning

— Deep networks learn directly from detector hits or reconstructed objects. - k= ss4mm

= Example architectures in use .

— CNNs — for calorimeter image-based classification. R = 374mm

— Graph Neural Networks (GNNs) — model particles or detector hits as nodes R = 299mm
with physics-motivated edges.

— Point-Cloud Networks — process particle-flow candidates or tracker hits
directly.

= Impact

— Higher tagging accuracy for b-jets, 1-jets, and boosted . g sy )
objects. Z E & .

— Resilience to pile-up and detector effects. ®| SERaE i

» Key Examples

— ATLAS Point-Cloud Segmentation for particle flow
object reconstruction (ATLAS note).

— LArTPC hit-based topology classification with quantum (a) PointNet++ (b) DGCNN (c) GravNet
machine learning and symmetry (arXiv:2503.12655). jet (black), electron (yellow), or background (blue)
— A Comparison of Deep Learning Models for Proton mloU Jet IoU Electron IoU | Background IoU
Backgrou nd Rejection with the AMS E|ectromag netic PointNet++ | 0.776 + 0.009 | 0.842 +0.007 | 0.61 +0.01 0.882 + 0.007
: e GravNet | 0.60+0.02 | 074001 |032+0.02 |0.75+0.02
Calorimeter (arxiv:2402.16285). GarNet 043+0.02 |045+0.04 |0.13+0.02 | 0.70+0.02
DGCNN | 0.826 + 0.005 | 0.885 = 0.002 | 0.69  0.0.01 | 0.904 + 0.002
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https://cds.cern.ch/record/2753414/files/ATL-PHYS-PUB-2021-002.pdf
https://arxiv.org/pdf/2503.12655
https://arxiv.org/pdf/2402.16285

Modern Al for Object Identification

* From handcrafted features to end-to-end learning

— Deep networks learn directly from detector hits or reconstructed objects. Photon 4

= Example architectures in use
— CNNs — for calorimeter image-based classification.

— Graph Neural Networks (GNNs) — model particles or detector hits as nodes

with physics-motivated edges.
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BNB DATA : RUN 5929 EVENT 1582. APRIL 15, 2016.

— Point-Cloud Networks — process particle-flow candidates or tracker hits

directly.

= Impact

— Higher tagging accuracy for b-jets, 1-jets, and boosted
objects.

— Resilience to pile-up and detector effects.

» Key Examples

— ATLAS Point-Cloud Segmentation for particle flow
object reconstruction (ATLAS note).

— LArTPC hit-based topology classification with quantum
machine learning and symmetry (arXiv:2503.12655).

— A Comparison of Deep Learning Models for Proton
Background Rejection with the AMS Electromagnetic
Calorimeter (arxiv:2402.16285).
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https://cds.cern.ch/record/2753414/files/ATL-PHYS-PUB-2021-002.pdf
https://arxiv.org/pdf/2503.12655
https://arxiv.org/pdf/2402.16285

Modern Al for Object Identification

* From handcrafted features to end-to-end learning

— Deep networks learn directly from detector hits or reconstructed objects.

= Example architectures in use

— CNNs — for calorimeter image-based classification.

— Graph Neural Networks (GNNs) — model particles or detector hits as nodes
with physics-motivated edges.

— Point-Cloud Networks — process particle-flow candidates or tracker hits Proton Ref, vs Electron Ef. (Tt Set, 200 - 1000 GeV, MO)
directly. o

= Impact

— Higher tagging accuracy for b-jets, 1-jets, and boosted IR

Proton Rejection
"
5

objects. _—

— Resilience to pile-up and detector effects. — \\\ e

» Key Examples e é

— ATLAS Point-Cloud Segmentation for particle flow 3 ””*””*””*“**”* e (20 e v Plectron £ Tost ek 100D 2000 Gev, MO
object reconstruction (ATLAS note). o Z |

— LArTPC hit-based topology classification with quantum
machine learning and symmetry (arXiv:2503.12655).

— A Comparison of Deep Learning Models for Proton
Background Rejection with the AMS Electromagnetic
Calorimeter (arxiv:2402.16285).
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https://cds.cern.ch/record/2753414/files/ATL-PHYS-PUB-2021-002.pdf
https://arxiv.org/pdf/2503.12655
https://arxiv.org/pdf/2402.16285

Al for Data Quality & Anomaly Detection

» Data Quality Monitoring (DQM)

— Detects detector malfunctions or calibration drifts in
real-time.

— Al models learn normal detector behavior and flag
deviations.

= Anomaly Detection for Physics Searches
— Trains on Standard Model “background” data only.

— Flags events with unusual topology, kinematics, or
detector signatures.

» Key Techniques

— Autoencoders, Variational Autoencoders, Density
Estimation, Normalizing Flows.

= Impact

— Early detection of detector issues — reduced
downtime.

— Potential to uncover rare or unexpected physics
signals without explicit search models.
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https://link.springer.com/article/10.1007/s41781-024-00118-z
https://link.springer.com/article/10.1007/s41781-024-00118-z
https://link.springer.com/article/10.1007/s41781-024-00118-z
https://link.springer.com/article/10.1007/s41781-024-00118-z

Al for Data Quality & Anomaly Detection

» Data Quality Monitoring (DQM)
— Detects detector malfunctions or calibration drifts in
real-time.

— Al models learn normal detector behavior and flag
deviations.

= Anomaly Detection for Physics Searches
— Trains on Standard Model “background” data only.

— Flags events with unusual topology, kinematics, or
detector signatures.

» Key Techniques

— Autoencoders, Variational Autoencoders, Density
Estimation, Normalizing Flows.

= Impact
— Early detection of detector issues — reduced
downtime.

— Potential to uncover rare or unexpected physics
signals without explicit search models.

jonne National Laboratory is a
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Each panel represents the
average of 100,000 jet
images. Pixel intensity
corresponds to the total pr
in each pixel. Upper row:
original sample. Middle
row: after reconstruction.
Lower row: pixelwise
squared error. Left
column: QCD jets. Middle
column: top jets. Right
column: g-jets.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021

Al for Probabilistic Modeling & Physics Interpretation

» From data to theory parameters Name Disgram o TooFs | Latent | Latemt | Constraimnt
Dimension
— Neural networks can learn physics PDFs directly from
collider data.

AE

£ = |z — do(es(@)II3 o X v X

(8 ]
&
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» PDFdecoder (PRD 111.014028)
— Encoder—decoder architecture in Mellin space.

. . . AE-CL B a L = |z — dy(es(x))|3 \/ \/
— Latent space dimensions correspond to physically @) + =l
interpretable modes.
()
= Advantages over traditional fits AB-WO m) || 2=l - duteonld
g i h“ & + |lm — |3 \/ X \/ \/

— Flexible function approximation.
— Naturally incorporates correlations between parameters

— Allows uncertainty quantification via Bayesian or VAE ||
ensemble methods. - -

= Beyond PDFs

— Similar approaches for detector response functions,
cross-section unfolding, and global fits.
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Learning PDFs through interpretable
latent representations in Mellin space
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.014028
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.014028
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.014028

Fast Simulation with Generative Al

Table 1: Models submitted to the CaloChallange.

» Motivation
. . . Dataset .
— Geant4 simulations are accurate but extremely slow — a major ~ Approach Model Code | 4 5 5 Section

1-7
bottleneck at HL-LHC.

CaloShowerGAN [21] [22] v v 3.1
. MDMA [23, 24] [25] g v 3.2
» Generative Models GAN' potocaN [26] Rl v v 3.3
— GANSs (Generative Adversarial Networks). DeepTree 28, 29 [30] Y 34
L L2LFlows [31, 32] 33] v v 4.1
— VAEs (Variational Autoencoders). CaloFlow [34, 35] 36,3 v v v v 49
— Normalizing Flows and Diffusion Models for stable, high-fidelity =~ NF CaloINN [33] Bl v v/ 42
. SuperCalo [40] [41] v 44
generatlon- CaloPointFlow [42] [43] v v 4.5
. CaloDiffusion [44] [45] v v v v 5.1
» Benchmark: CaloChallenge 2022 GaloClouds [46, 47 18, 49] e
— Community-wide comparison of generative Al methods for Diffusion ~ CaloScore %50], 51] [5?, ?3} j , v v 5.3
. . . CaloGraph [54 55 5.4
calorimeter simulation. CaloDiT [56] 157] P e
— Metrics: shower shape, energy resolution, computing throughput. Calo-vQ [58] B v v v 6.1
CaloMan [60] [61] v v 6.2
= Impact VAE DNNCaloSim [62, 63] [64] v 6.3
. Geant4-T £ 65 66 v 6.4
— 100-10,000x% speedup over Geant4 for certain workflows. CeToVEESTR 8] . {39} 7 & P~ as
— Enables large-scale MC production, rapid detector studies, and CaloLatent [67] [68] v 6.6
real-time inference applications. cpm  CaloDREAM [69] (70] v vl
CaloForest [71] [72] v v 7.2
CaloChallenge 2022: A Community
Challenge for Fast Calorimeter Simulation Argonne &) | Argenne Leagertip
anionat Lasoratory | COMPuting Facility



https://arxiv.org/pdf/2410.21611
https://arxiv.org/pdf/2410.21611
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Transformers in High-Energy Physics * *

» Why Transformers? ~a 4 .
b & w2

— Designed for sequence modeling — natural fit for particle lists, detector hits, and cotionpoin. /" 3 D .
even time-series data. proton beams o

— Handle variable-length, unordered inputs and capture global correlations _ , _A” __
through Sel f.attention ( collision event Hjetreconstructlon)—>< jet tagging )

— Scalable: performance improves with model size and training data availability. Partidle Transformer for Jet Taggin

L blocks
A

» Applications in HEP P p—
— Jet Tagging — Particle Transformer (ParT) on JETCLASS 2 )
dataset shows SOTA classification (arXiv:2202.03772). .

— Event Classification — Transformer architectures for multi-
object event-level tasks, outperforming CNNs and GNNs on
physics benchmarks (PRD 109.096035).

— Physics Object Identification — HL-LHC-ready attention-based
particle flow and reconstruction algorithms (arXiv:2507.17807). =

» Advantages Over Previous Architectures

Attention

Embedding

dding

U
NN | I I T—

Emt

— Captures long-range correlations beyond local neighborhoods (unlike v
CNNs or GNNs).
— Flexible for multi-modal data (tracking + calorimeter + timing layers). x
— Works well in low-level and high-level feature spaces. (b) Particle Attention Block (© Class Attention Block

Argonne Leadership
Computing Facility
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https://arxiv.org/pdf/2202.03772
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.096035
https://arxiv.org/pdf/2202.03772

Transformers in High-Energy Physics

» Why Transformers?

Designed for sequence modeling — natural fit for particle lists, detector hits, and
even time-series data.

Handle variable-length, unordered inputs and capture global correlations
through self-attention.

Scalable: performance improves with model size and training data availability.

= Applications in HEP

Input(s) 1 Input(s) 2 Input(s)
— Physics Object Identification — HL-LHC-ready attention-based i S —— 03 —
particle flow and reconstruction algorithms (arXiv:2507.17807). s T o o Teapod
= Advantages Over Previous Architectures S ooaf B I —
— Captures long-range correlations beyond local neighborhoods (unlike § T A _— g o
CNNs or GNNs). j: 0:3:;%% : -
— Flexible for multi-modal data (tracking + calorimeter + timing layers). S koo -
— Works well in low-level and high-level feature spaces. N T P B I
ENERGY U5t s 0 g 0 3
T 35 T 35

Jet Tagging — Particle Transformer (ParT) on JETCLASS
dataset shows SOTA classification (arXiv:2202.03772).

Event Classification — Transformer architectures for multi-
object event-level tasks, outperforming CNNs and GNNs on
physics benchmarks (PRD 109.096035).

I— Event classifier transformer output
Add *
* A Sigmoid
s
N
*
FetonmaNewort
4 4 4
( Add ( Dropout )
4 4
* Value Key Query
Multi-head Attention H
Value Key Query
A4 4
L
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Embedded input tokens

Input Embedding

trainable class token



https://arxiv.org/pdf/2202.03772
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.096035

Transformers in High-Energy Physics

» Why Transformers?
— Designed for sequence modeling — natural fit for particle lists, detector hits, and 1.0

even time-series data. f il

— Handle variable-length, unordered inputs and capture global correlations /
through self-attention.
— Scalable: performance improves with model size and training data availability. / pp— by (AUC = 0.985)
pp — tt,t — ¢y (AUC = 0.935) _

ROC - Transformer network

2
o0

Signal efficiency
= =
~ o
'\

= Applications in HEP 02 — o> itt 2y (AUO=0017)
— Jet Tagging — Particle Transformer (ParT) on JETCLASS 00 = = = = = =
dataset shows SOTA classification (arXiv:2202.03772). ' " False positive rate '
— Event Classification — Transformer architectures for multi- Confusion Matrix (pp — ¢ — ¢7)
object event-level tasks, outperforming CNNs and GNNs on @
physics benchmarks (PRD 109.096035). ;’50 0.801 0.199
Z

— Physics Object Identification — HL-LHC-ready attention-based
particle flow and reconstruction algorithms (arXiv:2507.17807).

» Advantages Over Previous Architectures

— Captures long-range correlations beyond local neighborhoods (unlike
CNNs or GNNS) Negative Positive

— Flexible for multi-modal data (tracking + calorimeter + timing layers).
— Works well in Iow level and high-level feature spaces.

frgomne N

0.022 0.978

Positive
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https://arxiv.org/pdf/2202.03772
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.096035
https://arxiv.org/abs/2507.17807
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PHYSICS THEORY PREDICTIONS

............

= The Traditional Model in HEP
— Experiments run for months/years, producing massive datasets.
— Full analysis performed after data collection is complete.

— Theory fits and interpretations only finalized long after running ends.

COMPARE THEORY
PREDICTION TO
MEASUREMENTS
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https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2021.661501/full

Towarg RgaI-Tlme Physics Fits with Al

§ PHYSICS MEASUREMENTS
fl Generator !

I e
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| ; ModuIeZ
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PHYSICS THEORY PREDICTIONS
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Event-level QCF inference framework

COMPARE
THEORY

PREDICTION TO
MEASUREMENTS

pa

e A New Paradigm: Real-Time Fitting
o SciDAC project for the EIC explores Al-enabled parameter estimation during data collection.
o Al models ingest live experimental data, update theory fit parameters in near real-time.
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https://iopscience.iop.org/article/10.1088/2632-2153/adc8fb

Towarg Real-Time Physics Fits with Al

e Feedback loop can guide:
o Detector configurations
o Beam settings
o Data-taking strategies

. o COMPARE
o for optimal sensitivity. THEORY
e Enabling Technologies PREDICTION TO
; . , . MEASUREMENTS
o Fast surrogate models trained on large simulation datasets.

o Streaming analysis frameworks integrated with experimental DAQ.
o Al-assisted uncertainty quantification for robust decision-making.
e Why This Matters

o Shortens the cycle from measurement to physics insight.
o Allows adaptive experimentation.

o Represents a fundamental shift in HEP’s data—analysis—theory pipeline.

Tria Trial PMD '|  Detector
S i ]3 ) 9 Sleehs

PHYSICS THEORY PREDICTIONS

________________________________________________

e A New Paradigm: Real-Time Fitting

o SciDAC project for the EIC explores Al-enabled parameter estimation during data collection.
o Al models ingest live experimental data, update theory fit parameters in near real-time.
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https://iopscience.iop.org/article/10.1088/2632-2153/adc8fb

Takeaways & Outlook

HEP has always been data-driven — Al is the next step in a
long tradition of statistical innovation.

FROM COLLISION TO

= Modern Al methods (CNNs, GNNs, Transformers, Generative CONCLUSION IN SECONDS
Models) are already improving classification, simulation, and /. /’\ —
anomaly detection. | /Q —1| =

» Integration with theory is deepening — probabilistic models, _ j_‘ \g’ />< —
real-time fits, and adaptive experiments are emerging. = K / ==l 7

= The future is faster, smarter, and more adaptive — Al will LAY O/ /\\
shorten the path from data to discovery. \\ e \
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