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From Likelihoods to Language Models: 
AI’s Evolving Role in High-Energy Physics
▪ HEP’s long history with advanced 

analysis methods
From likelihood fits to boosted decision trees 
& random forests.

▪ Why AI now?
Data deluge from LHC/HL-LHC & next-gen 
experiments; complex detector environments.

▪ The leap to modern AI
Deep learning, transformers, generative 
models—tackling classification, simulation, 
and anomaly detection.

▪ Impact
Improving physics reach, speeding 
simulations, and enabling new kinds of 
searches.
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A Legacy of Statistical Learning in HEP
▪ Analytical methods have always been central to 

discovery
— Likelihood fits, chi-squared minimization, Bayesian 

inference.
▪ Adoption of early machine learning in the 

2000s–2010s
— Boosted Decision Trees (BDTs) in Higgs searches 

(e.g., ATLAS, CMS).
— Random Forests for particle ID and event 

classification.
▪ Strengths and limits
— Highly interpretable, good for small datasets.
— Struggle with complex correlations in 

high-dimensional feature spaces.
▪ The setup for today
— Increasing detector complexity and HL-LHC data 

rates demand models with higher capacity and 
automation.

Trees-n-Trees

chi^2 Bayes-Infer

The mono-Higgs + MET 
signal at the Large Hadron 
Collider: a study on the γγ 
and b ¯b final states
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https://medium.com/analytics-vidhya/ensemble-models-bagging-boosting-c33706db0b0b
https://arxiv.org/pdf/1012.3754
https://www.wolfram.com/language/introduction-machine-learning/bayesian-inference/
https://arxiv.org/pdf/2012.07822
https://arxiv.org/pdf/2012.07822
https://arxiv.org/pdf/2012.07822
https://arxiv.org/pdf/2012.07822


Modern AI for Object Identification

jet (black), electron (yellow), or background (blue)

▪ From handcrafted features to end-to-end learning
— Deep networks learn directly from detector hits or reconstructed objects.
▪ Example architectures in use
— CNNs — for calorimeter image-based classification.
— Graph Neural Networks (GNNs) — model particles or detector hits as nodes 

with physics-motivated edges.
— Point-Cloud Networks — process particle-flow candidates or tracker hits 

directly.
▪ Impact
— Higher tagging accuracy for b-jets, τ-jets, and boosted 

objects.
— Resilience to pile-up and detector effects.
▪ Key Examples
— ATLAS Point-Cloud Segmentation for particle flow 

object reconstruction (ATLAS note).
— LArTPC hit-based topology classification with quantum 

machine learning and symmetry (arXiv:2503.12655).
— A Comparison of Deep Learning Models for Proton 

Background Rejection with the AMS Electromagnetic 
Calorimeter (arxiv:2402.16285).
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AI for Data Quality & Anomaly Detection
▪ Data Quality Monitoring (DQM)
— Detects detector malfunctions or calibration drifts in 

real-time.
— AI models learn normal detector behavior and flag 

deviations.

▪ Anomaly Detection for Physics Searches
— Trains on Standard Model “background” data only.
— Flags events with unusual topology, kinematics, or 

detector signatures.

▪ Key Techniques
— Autoencoders, Variational Autoencoders, Density 

Estimation, Normalizing Flows.

▪ Impact
— Early detection of detector issues → reduced 

downtime.
— Potential to uncover rare or unexpected physics 

signals without explicit search models.

Autoencoder-Based Anomaly 
Detection System for Online Data 
Quality Monitoring of the CMS 
Electromagnetic Calorimeter7

https://link.springer.com/article/10.1007/s41781-024-00118-z
https://link.springer.com/article/10.1007/s41781-024-00118-z
https://link.springer.com/article/10.1007/s41781-024-00118-z
https://link.springer.com/article/10.1007/s41781-024-00118-z
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Searching for new physics with 
deep autoencoders

Each panel represents the 
average of 100,000 jet 
images. Pixel intensity 
corresponds to the total 𝑝𝑇
 in each pixel. Upper row: 
original sample. Middle 
row: after reconstruction. 
Lower row: pixelwise 
squared error. Left 
column: QCD jets. Middle 
column: top jets. Right 
column: 𝑔-jets.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021


AI for Probabilistic Modeling & Physics Interpretation
▪ From data to theory parameters
— Neural networks can learn physics PDFs directly from 

collider data.

▪ PDFdecoder (PRD 111.014028)
— Encoder–decoder architecture in Mellin space.
— Latent space dimensions correspond to physically 

interpretable modes.

▪ Advantages over traditional fits
— Flexible function approximation.
— Naturally incorporates correlations between parameters.
— Allows uncertainty quantification via Bayesian or 

ensemble methods.

▪ Beyond PDFs
— Similar approaches for detector response functions, 

cross-section unfolding, and global fits.
Learning PDFs through interpretable 
latent representations in Mellin space
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.014028
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.014028
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.014028


Fast Simulation with Generative AI
▪ Motivation
— Geant4 simulations are accurate but extremely slow — a major 

bottleneck at HL-LHC.

▪ Generative Models
— GANs (Generative Adversarial Networks).
— VAEs (Variational Autoencoders).
— Normalizing Flows and Diffusion Models for stable, high-fidelity 

generation.

▪ Benchmark: CaloChallenge 2022
— Community-wide comparison of generative AI methods for 

calorimeter simulation.
— Metrics: shower shape, energy resolution, computing throughput.

▪ Impact
— 100–10,000× speedup over Geant4 for certain workflows.
— Enables large-scale MC production, rapid detector studies, and 

real-time inference applications.

CaloChallenge 2022: A Community 
Challenge for Fast Calorimeter Simulation10

https://arxiv.org/pdf/2410.21611
https://arxiv.org/pdf/2410.21611


▪ Why Transformers?
— Designed for sequence modeling — natural fit for particle lists, detector hits, and 

even time-series data.
— Handle variable-length, unordered inputs and capture global correlations 

through self-attention.
— Scalable: performance improves with model size and training data availability.
▪ Applications in HEP
— Jet Tagging — Particle Transformer (ParT) on JETCLASS 

dataset shows SOTA classification (arXiv:2202.03772).
— Event Classification — Transformer architectures for multi-

object event-level tasks, outperforming CNNs and GNNs on 
physics benchmarks (PRD 109.096035).

— Physics Object Identification — HL-LHC-ready attention-based
particle flow and reconstruction algorithms (arXiv:2507.17807).

▪ Advantages Over Previous Architectures
— Captures long-range correlations beyond local neighborhoods (unlike 

CNNs or GNNs).
— Flexible for multi-modal data (tracking + calorimeter + timing layers).
— Works well in low-level and high-level feature spaces.

Particle Transformer for Jet Tagging

Transformers in High-Energy Physics
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Toward Real-Time Physics Fits with AI

source

PHYSICS THEORY PREDICTIONS

PHYSICS MEASUREMENTS

PROCESS BOTH

COMPARE THEORY 
PREDICTION TO 

MEASUREMENTS
▪ The Traditional Model in HEP

— Experiments run for months/years, producing massive datasets.
— Full analysis performed after data collection is complete.
— Theory fits and interpretations only finalized long after running ends.
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https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2021.661501/full
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● A New Paradigm: Real-Time Fitting
○ SciDAC project for the EIC explores AI-enabled parameter estimation during data collection.
○ AI models ingest live experimental data, update theory fit parameters in near real-time.15
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● A New Paradigm: Real-Time Fitting
○ SciDAC project for the EIC explores AI-enabled parameter estimation during data collection.
○ AI models ingest live experimental data, update theory fit parameters in near real-time.

● Feedback loop can guide:
○ Detector configurations
○ Beam settings
○ Data-taking strategies
○ for optimal sensitivity.

● Enabling Technologies
○ Fast surrogate models trained on large simulation datasets.
○ Streaming analysis frameworks integrated with experimental DAQ.
○ AI-assisted uncertainty quantification for robust decision-making.

● Why This Matters
○ Shortens the cycle from measurement to physics insight.
○ Allows adaptive experimentation.
○ Represents a fundamental shift in HEP’s data–analysis–theory pipeline.
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https://iopscience.iop.org/article/10.1088/2632-2153/adc8fb


▪ HEP has always been data-driven — AI is the next step in a 
long tradition of statistical innovation.

▪ Modern AI methods (CNNs, GNNs, Transformers, Generative 
Models) are already improving classification, simulation, and 
anomaly detection.

▪ Integration with theory is deepening — probabilistic models, 
real-time fits, and adaptive experiments are emerging.

▪ The future is faster, smarter, and more adaptive — AI will 
shorten the path from data to discovery.

Takeaways & Outlook
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